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Abstract— Human behavioral analysis (HBA) is an active area 
of research centered on analyzing the principles of physical and 
psychological human behavior. Activity recognition using sensors 
is already implemented through wearable devices and 
smartphones, while many studies are being carried out to further 
improve and strengthen the accuracy and precision of data 
gathered from different type of sensors. One of the biggest 
potential large-scale implementations of HBA could be more 
self-adaptive smart homes. The aim of this paper is to summarize 
20 papers from the past 5 years (2013-2018). These papers used 
a spectrum of sensors to further improve human activity 
recognition (HAR) performance, while some try to bridge the gap 
between physical and psychological recognition (HBA). Results 
demonstrated that the smartphone is the most used device for 
the potential increase in the accuracy of behavior classifications. 
Additionally, accelerometers and gyro-scopes are the most 
common choice of sensors for tracking human activities. 

 
Index Terms— Human Activity Recognition, Human Behavioral 

Analysis, Emotion Recognition, Activity Sensors 

 

I. INTRODUCTION 

  An activity sensor is essentially a device that detects 

and tracks physical movements, while recording and often 

responding to the input i.e. movements in a set form. 

Human activity recognition (HAR) utilizes various sensors 

such as accelerometers [2], gyroscopes [19], heart rate 

monitors [14] with novel machine learning techniques to 

transform low-level collected data and provide rich 

contextual information in a real-life application.  HAR has a 

plethora of implementations and benefits in various 

everyday situations, i.e. fitness, healthcare, smart homes 

being some of the most common uses today [3]. While 

human activity recognition focuses more on motion and 

physical movements, HBA goes further in depth to bridge a 

relation between physical movements and psychological 

states. HBA aims to incorporate physical movements 

observed by sensors and use them to analyze the subject’s 

emotions at the given time. Jekauc and Brand [8] stated 

that while there have been studies carried out to 

hypothesize the relation between affective states and 

physical activity, not enough evidence has been gathered 

for the relation to become a research focal point as yet. In 

this area, various studies are emerging to gather stronger 

 
 

evidence on the correlation as well as new techniques to 

utilize the link to introduce smarter systems using activity 

recognition devices. One such study carried out by Quiroz, 

Yong and Geangu [18], makes use of data collected from 

smartwatch accelerometers to predict a user’s emotion 

based on their gait tracked via smartwatches. Similarly, 

Kanjo, Younis and Sherkat [11] present the first attempt at 

fusing and modeling data from environmental and 

physiological sources collected from sensors in a real-world 

setting. While Kakarla and Reddy [10] focus on facial 

recognition for emotion detection. 

HAR on the other hand has been a major focal point of 

research, however it is still a controversial topic due to the 

diverse qualities of human activities and their tracking 

methods [7]. Currently, the most common choice of 

sensors for activity recognition are smartphone 

accelerometers and gyroscopes. However, Chen, Zhu, Soh 

and Zhang [3], raised the issue of a degradation in accuracy 

of activity recognition data due to the flexibility of 

smartphone us-age.  On a similar note, Murao, Mogari, 

Terada, and Tsukamoto [15] noted that while thorough 

research has been carried out to observe and gather the 

best sensor(s) placement, not enough consideration is 

given toward device or sensor wearability. 

This paper reviews different types of sensors, datasets, 

classification and analysis methods applied in human 

activity detection. The main contribution of this study is 

detailed evaluation and analysis of recent research articles 

in activity detection and behavioral analysis using sensors. 

The aim is to analyze the current implementations 

addressed by the research articles as well as the out-comes 

of each of the papers in relation to the issues raised by 

them. 

The rest of this paper is organized as follows: Section II 

presents details the review approach and flow adaptation. 

Section III provides a tabular summarization followed by 

discussion on the visualization from the evaluated papers. 

And finally, Section IV concludes the paper. 

II. REVIEW METHOD  

The review process of this paper covers publications from 

2013 until 2018. The main flow of the review process was 

adopted from the study of Pak and  Teh [17]. There are 20 

evaluated articles from peer-reviewed journals and 
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conferences. The detailed evaluation of these articles is in 

Section III. A column by column breakdown is presented 

below in Table 1, in order to make the evaluation clear. The 

first column indicates the reference of the articles. The next 

column is the publication year of the evaluated articles. The 

following column covers the description of the evaluated 

article. Each study applies different classification or analysis 

methods, for instance Support Vector Machines, Neural 

Network model, Random Forest etc. To detail this, the 

fourth column represents the analysis method or classifier 

evaluated in the respective study. The next column includes 

the type of sensor the respective researchers used in their 

study. The second last column covers the type of device 

used in their study. Lastly, the seventh column represents 

the dataset used in the evaluated papers.  

III. RESULTS

 

Table 1: Summarization of Evaluated Research Articles

 
Ref Year Description Classification or Analysis 

Method 
Type of Sensor Type of 

Devices 
Dataset 

[22] 2013 Hidden Markov Model 
(Hmm) based Tri-training 
algorithm in human 
activity recognition with 
smartphone 

HMM based Tri-training 
algorithm 

Smartphone- tri-axial 
accelerometer 

Smartphone-
android 

Collected data 

[15] 2013 Evaluation function of 
sensor position for 
activity recognition  
considering wearability 

Activity recognition 
algorithm  

3-axis wireless 
accelerometers  

Wearable 
sensor 

Collected data 

[12] 2013 Sensor-embedded teeth 
for oral activity 
recognition  

C4.5 Decision Three (DT) 
Multivariate Logistic 
Regression (MLR) 
Support Vector Machine 
(SVM)  

Tri-axial accelerometer  Oral sensory 
unit  

Collected data 

[23] 2014 Wearable sensor-based 
human activity 
recognition from 
environmental 
background sounds  

Haar-like sound feature 
with hidden Markov 
model (HMM)  

Power-aware sensor 
node consisting of 
embedded sound 
acceleration, 
IR sensor 
Other sensors with a size 
of an ID card 

Wearable 
device 

Collected data 

[10] 2014 A real time facial 
emotion recognition 
using depth sensor and 
interfacing with second 
life based virtual 3d 
avatar  

Facial Action Code 
Systems 
(FACS) and Facial 
Animated Parameters 
(FAP)  

Kinect depth sensor Kinect 
camera  

N/A 

[5] 2014 Recognizing Human 
Activities from 
Smartphone Sensor 
Signals 

Support Vector 
Machines 
J48 decision trees 
Random forests 

Accelerometer 
Gyroscope 
Microphone 

Smartphone Collected data 

[24] 2015 Smartphone-based 
human activity 
recognition in buildings 
using 
Locality-constrained 
Linear Coding (LLC) 

Support Vector 
Machines (SVM) 
KNN 
Kernel-Extreme Learning 
Machine  
Sparse Representation 
Classifier  

Smartphones- 
accelerometer 
Gyroscope 

Smartphone Collected 
dataset 

[19] 2015 Devices are different: 
assessing and mitigating 
mobile sensing 
heterogeneities for 
activity recognition  

C4.5 trees 
SVMs 
k-NN learners random 
forests  

Accelerometer  
Gyroscopes 

Smartphone 
(Android and 
iOS) 
Smartwatch 
Tablet 

Collected 
dataset 

[9] 2015 Human activity 
recognition using 
wearable sensors by 
deep convolutional 
neural networks 

Deep Convolutional 
Neural Networks  

Accelerometers 
Gyroscopes  

Smartphone 
Smartwatche
s Sport 
bracelets  

Three public 
datasets: 
UCI 
USC 
SHO 
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[13] 2015 Recognizing lifestyle 
activities 
of diabetic patients with 
a smartphone  

Classifiers trained with 
machine learning  

Smartphone microphone 
Wi-Fi signal-location 
GPS receiver  
Accelerometer  
Respiration-rate  

Smartphone Collected 
dataset 

[1] 2016 Multi-modal audio, 
video and physiological 
sensor learning for 
continuous emotion 
prediction  

SVM  
Baseline  
Neural network model  
Convolutional Neural 
Network 

Physiological sensor 
modalities  

Audio 
recording 
and video 
devices 

Remote 
Collaborative 
and Affective 
Interactions 
(RECOLA) 
database  

[6] 2016 HASC-PAC2016: large 
scale human pedestrian 
activity corpus and its 
baseline recognition 

Baseline Accelerometer 
Gyroscope 
Magnetometer Location 
Barometric pressure 
Proximity 
Wi-Fi 

Smartphone ASC corpora 
HASC-IPSC  

[21] 2016 Performance Evaluation 
of Classifiers on WISDM 
Dataset for Human 
Activity Recognition 

Machine learning 
classifier algorithms 
(LibSVM, J48 and 
Random Forest decision 
tree algorithms 
IBK instance-based 
J-RIP rule induction 
Bagging and Logistic 
Regression) 

Accelerometer  Smartphone Dataset WISDM 
group 

[2] 2017 Performance analysis of 
smartphone-sensor 
behavior for human 
activity recognition. 

Nearest Neighbors (NN) 
Random Forests SVM 

Accelerometer 
Gyroscope  

Smartphone Collected 
dataset  

[16] 2017 Classification of human 
activity based on 
smartphone inertial 
sensor using support 
vector machine. 

Multiclass SVM linear 
kernel 
Polynomial kernel 

Smartphone on the 
waist 

Smartphone Collected 
dataset UCI 
Machine 
Learning 
Respiratory  

[3] 2017 Robust human activity 
recognition using 
smartphone sensors via 
coordinate 
transformation and 
principal component 
analysis and online SVM  

SVM  
NN 
KNN 
Decision tree (DT) 
  

Smartphone placed in 
pants’ pocket, shirt’s 
pocket, and backpack  

Smartphone-
android 

Collected 
dataset 

[20] 2017 Human activities 
recognition in android 
smartphone using 
Support Vector Machine 

SVM  Smartphone- 
acceleration 
Gyroscope  
Accelerometer  

Smartphone-
android 

Collected 
dataset 

[4] 2017 Full model for sensors 
placement and activities 
recognition 

Feature selection 
technique  

Six-axis 
accelerometer/gyroscop
e 

Wearable 
sensor 

Collected 
dataset 

[14] 2017 Convolutional neuronal 
networks-based sensor 
fusion techniques for 
multimodal human 
activity recognition 

Deep learning method 
Random Forest (RF) 

Heart rate monitor  
Wrist sensor  

Wearable 
devices 

Real-world 
multimodal 
dataset 
(PAMAP2) 

[11] 2018 Towards unravelling the 
relationship between 
on-body, environmental 
and emotion data using 
sensor information 
fusion approach  

Statistical correlation, 
covariance and multiple 
regression analysis  
SVM 
Random Forest (RF) 
KNN 
Naive Bayes (NB)  

On-body and mobile 
multi- sensors (Heart 
Rate Body Temperature 
Breathing 
Motion Electrodermal 
Activity EEG 
Headsets 
Muscle contraction 
Blood Volume pulse) 

Microsoft 
band Android 
phone 

Collected data 

Table 1 above briefly summarizes and organizes the 20 articles evaluated in the area of Human Activity Recognition 
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and Human Behavioral Analysis. Moving to a more detailed 

discussion, we look at the different types of sensors, 

methods and devices used in the studies as well as some of 

the limitations or drawbacks raised and/or addressed by 

the respective studies.  

While HAR is a major research focal point, there is still a 

common limitation of degradation or lack of accuracy and 

precision in readings. Chen, Zhu, Soh, and Zhang [3] note 

that while sensors embedded within smartphones are a less 

intrusive and more convenient choice of device for HAR 

data collection, their flexibility of use enables degradation 

in recognition accuracy due to orientation, placement, and 

subject variations. To tackle this issue, they proposed a 

more robust HAR system which takes the respective factors 

into account. They present an online independent support 

vector, which utilizes principal component analysis 

(CT-PCA) to rule out the effect of orientation variations, 

thus improving the accuracy of activity recognition. In a 

similar earlier study, Zhu, Chen, and Soh [24] stated that 

most of the activity recognition data collected via 

smartphones did not take feature selection into account, 

directly feeding features from both the time and frequency 

domains to the machine learning algorithms. This oversight 

results in a decrease in accuracy of system performance. 

Addressing this issue, they propose a Locality-constrained 

Linear Coding (LLC) feature selection approach to increase 

HAR performance. Experiments showed an improved 

accuracy of around 90% with the LLC approach as a result 

of a more efficient dictionary for feature representation 

and gyroscope signals. Xie and Wu [22] introduce a Hidden 

Markov Model (HMM) based tri-algorithm using tri-axial 

smartphone accelerometer data to explicitly reduce the 

amount of noise introduction into classifier groups and 

make the output state stream connect more smoothly by 

getting rid of unlabeled and abnormal samples in the 

training dataset. Also taking the HMM approach, Zhan and 

Kuroda [23] to introduce a novel low-level calculation 

one-dimensional (1-D) Haar-like sound feature with Hidden 

Markov Model to recognize background environmental 

sounds. This approach was introduced to address the 

limitations of sound recognition algorithms (SRA) i.e. 

limited resources and the power consumption 

requirement. The proposed method showed an accuracy of 

96.9% when tested with 22 regular environmental sounds 

applicable to daily activities. Currently this method 

outperforms similar commonly used SRAs with respect to 

both, the accuracy and the power consumption. 

 

 
Fig. 1: Types of devices used (%) 

 
The figure above (Fig. 1), illustrates a summary of all the 

devices that have been used in the evaluated research 
articles. As can be seen, smartphones and wearables are 
two of the most common choice of device. The 
accelerometer and gyroscope found in smartphones and 
wearables are thus, two of the most common type of 
sensors being used in HAR research. That being said, when 
various sensors are deployed through multiple devices, the 
performance accuracy of HAR systems is vastly diminished 
due to discrepancies in training, device hardware and 

operating system features [19]. The study evaluated 13 
device models from different manufacturers with nine 
users and various common classification techniques to 
determine the effect of on-device sensors and sensor 
handling heterogeneities on HAR performance. The study 
showed that on-device sensors and sensor handling 
heterogeneities significantly hinder HAR performance with 
an added effect on the results, depending on variations in 
devices and types of techniques used. They proposed and 
tested mitigation techniques such as preprocessing to 
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decrease in heterogeneity-caused losses in accuracy. One 
such technique proposed was the clustering of devices 
based on their heterogeneity properties, allowing classifiers 
to train on specific device clusters.  Murao, Mogari, Terada 
and Tsukamoto [15] raised the fact that although thorough 
research is being carried out to determine the most suited 
sensor placement for context aware systems, not enough 
consideration is giving toward device wearability and user 
comfort. Hence the paper proposed an evaluation function 
that rates sensor placement taking into account its 
accuracy and wearability through 20 sensors placed on the 
test subject’s body with 30 variations of physical activity, 
mostly being exercises such as yoga and weight training. 
Through survey questionnaires, the study resulted in 
finding the best sensor combination whose wearability 
meets the accuracy tolerance indicated by the test subject. 
Addressing the challenges of smartphone variety as well as 
overall accuracy of in-built device sensors, Chen and Shen 
proposed an HAR system with a higher recognition 
accuracy. They presented three classification models, one 
personalized model and two generalized models to 
evaluate activity recognition performance from 
smartphone motion sensors. They tested their approach of 
27,681 samples with various multi-class classifiers (RF, SVM 
- linear kernel, SVM RBF kernel and k Nearest Neighbor), 
concluding that the approach resulted in improvements of 
the accuracy in sensor-based activity recognition. The 
performance was tested on different variations of 
smartphone placements, user spaces, and involvement of 
sensors. The personalized model reached an F-score of 
95.95% while the generalized models reached an F-score of 
96.26%. 

Further on classifier performance, Walse, Dharaskar and 
Thakare [21] use the WISDM HAR public domain dataset to 
evaluate various machine learning classifiers to prove the 
efficiency of smartphone collected activity data in 
determining daily activities despite the device being in the 
user’s pocket. They observed that with the correct 
classifier, the recognition accuracy for most activities can 
be as high as 96%. Other researchers on this area carried 
out experiments using the Multilayer Perceptron classifier 
(MLP) and Random Forest (RF) classifiers, resulting in a 
91.7% accuracy for MLP and 75.9% for the RF classifier. In 
comparison, the results of the study in this case had a much 
higher accuracy of 98.09% using the RF classifier with 
activities also being classified much faster. Jiang and Yin [9] 
make use of Deep Convolutional Neural Networks (DCNN) 
to achieve improved recognition accuracy with a low 
computational cost by using novel activity images as the 
inputs for the DCNN. The DCNN is designed to study 
low-level to high-level features from the activity image 
leading to activity recognition. The proposed method was 
tested on three public domain datasets and showed to 
have outperformed state-of-the-arts in terms of 
recognition accuracy and computational cost. Münzner, 
Schmidt, Reiss, Hanselmann, Stiefelhagen and Dürichen 
[14] use CNN’s on real-world multimodal datasets (RBK and 
PAMAP2) to determine whether data specific normalization 
is necessary, how to ideally fuse multimodal sensor data 
and how dependent the efficiency of some current HAR 

approaches is on their training dataset. The study showed 
that sensor specific normalization is necessary for increased 
recognition accuracy. They presented a novel method for 
pressure focused normalization with showed to have 
increased the F1 score by approximately 4.5% when tested 
on the RBK dataset. They also found that the CNN based on 
a shared filter approach had a lower dependency on readily 
usable training data in comparison to other fusion 
approaches. Nurhanim, Elamvazuthi, Izhar and Ganesan 
[16] study the performance of different classification 
kernels of the SVM for classifying various daily activities. 
Test subjects performed various physical activities such as 
sitting, climbing stairs, and laying down which were tracked 
and measured using inertial sensor signals. The collected 
data was processed using signal processing methods and 
multiple features of time and frequency domain. The 
selected classification techniques were evaluated on the 
following performance criteria: precision, recall, and 
correct accuracy classification rate percentages using 
10-fold validation. Their proposed One Versus All Multiclass 
Support Vector Machine (OVA MC-SVM) Polynomial kernel 
method provided the highest classification performance of 
98.57%. Also making use of SVM, Tran and Phan [20] 
presented a completed system which covers feature 
extraction, data acquisition, training and recognition of 
human activity, with some limitations such as low 
recognition percentage for certain activities. The accuracy 
of their system is dependent on feature selection and 
model training quality. The Android system was tested with 
248 features, with a result of 89.59% recognition accuracy. 
Ichino, Kaji, Sakurada, Hiroi and Kawaguchi [6] mention that 
current research utilizes a rather small number of test 
subject data, mostly created within a test lab. To address 
this current obstacle, they held the HASC Challenge to 
collect activity recognition data over a span of 5 years. The 
data collected consisted of indoor pedestrian data with an 
equal ratio of age and gender. To aid in HAR research and 
accuracy optimization studies they combined the challenge 
data into a publicly available single corpus (HASC-PAC2016). 

Luštrek, Cvetkovic, Mirchevska, Kafali, Romero, and 
Stathis [13]  make use of smartphones to aid in better 
tracking of daily lifestyle activities of diabetes patients, 
which could be beneficial for physicians as well the patients 
themselves. The proposed approach consisted of three 
steps as follows, first, GPS data was collected from the 
smartphone as well as Wi-Fi coordinates and accelerometer 
data. Following this the trained classifiers were used to 
determine the user’s activity and then passed through 
machine learning and symbolic reasoning. Machine learning 
was applied to take on large quantity difficult-to-interpret 
data using multiple classifiers in an appropriate hierarchy. 
This approach strengthened the recall for eating activities 
through applied heuristics and showed a classification 
accuracy of 0.88.  

Moving to a different approach to activity recognition Li, 
Chen, Chen, Huang and Chu [12]focus on oral activity 
recognition (OAR). The study was carried out using an oral 
wearable system and tested on various oral activities such 
as drinking, coughing, chewing and speaking. The 
evaluation was conducted in a lab with 8 test subjects. The 
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study calculated a 59.8% F-measure of oral activity 
recognition with a person-independent SVM classifier and a 
93.8% through a person-dependent SVM classifier. The 
study was carried out using 10-fold cross-validation with 
SVM, decision tree (DT) and multilayer perceptron (MLP). 
SVM results (93.8%) outperformed DT (52.2%) and MLP 
(60.5%) by a large gap for person-dependent data. 
Person-independent classification has a lower F-score 
however SVM (59.8%) remained the most robust classifier 
with DT getting a 40.8% F-measure and MLP achieving a 
55.9% F-measure. 

Branching towards bridging the gap between physical 
and psychological HAR, Kakarla and Reddy [10] use facial 
recognition to detect a person’s emotion. Using a Kinect 
Sensor, they track facial activity in real-time to identify 
specific points of interest using mesh on the test subject’s 
face for feature extraction. They implemented a FACS 
trained algorithm based on real-time emotion recognition 
using a Kinect Depth Sensor. Kanjo, Younis and Sherkat [11] 
carried out a real-world study with mobile and on-body 
sensors through 40 test participants walking. The study was 
conducted to evaluate the relationship between 
environmental, on-body and emotion data through sensor 
fusion. Multiple regression showed a visible correlation 
between heart rate and exposure to environmental noise. 
Aside from noise, air pressure was shown to have had the 
greatest effect on changes in motion and body 
temperature. Emotion data was collected through online 
self-reporting. To predict emotions, they use a 
multi-learner approach based on the stacking algorithm. 
Using the physiological and environmental datasets, they 
use stacking with SVM, RF, KNN, and Naive Bayes (NB). The 
results showed an F-measure of 0.84 and an accuracy of 
86% in emotion prediction using on-body sensors. More on 
emotion prediction Brady et al. [1] address the current 
challenges in emotion detection from audio, video and 
physiological sensors. They discuss The Audio Video 
Emotion Challenge (AVEC) which adopts fusion and 
multi-learning on all available modalities. The study 
presents the development of novel high- and low-level 
features for modeling emotion in the audio, video, and 
physiological channels and notes the importance of using 
the time-series characteristics of valence and arousal 
states. The resultant system outperformed baseline 
systems when evaluated with a test set, achieving a 
Concordant Correlation Coefficient (CCC) of 0.687 for 
valence and 0.770 for arousal. 

IV. CONCLUSION 

This paper presents a summarization of 20 research studies 
from the past 5 years (2013-2018), carried out in the area 
of Human Activity Recognition (HAR). Some of these papers 
attempt to bridge the gap between physical and 
psychological recognition i.e. Human Behavioral Analysis 
(HBA) through proposed classifiers and algorithms. The 
studies carried out in the articles contributed to improving 
HAR performance accuracies as well as propose new 
methods addressing certain limitations or obstacles in 
current HAR research. One of the main potential 
implementations of HBA could be more advanced 

self-adaptive smart homes as well as more independent 
health care applications in hospital and patient care. 
Results showed that accelerometers and gyroscopes are 
the most opted for choice of sensors, with smartphones 
and wearables are two of the most common choice of 
devices for HAR and activity tracking. 
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